In this paper, we tackle the high computational overhead of transformers for lightweight image super-resolution. (SR). Motivated by the observations of self-attention's inter-layer repetition, we ...
Abstract: Graph Convolution Networks (GCNs) have achieved remarkable success in representation of structured graph data. As we know that traditional GCNs are generally defined on the fixed first-order ...
Abstract: The morphological undecimated wavelet (MUW) is an efficient feature extraction algorithm for bearing fault diagnosis. Currently, the researched MUW is mainly focused on background noise ...
KernelOptimizer is an open-source tool that automates CUDA kernel optimization for PyTorch workloads using large language models (LLMs). Inspired by Stanford CRFM’s fast kernel research, it leverages ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results