Abstract: The gradient descent bit-flipping with momentum (GDBF-w/M) and probabilistic GDBF-w/M (PGDBF-w/M) algorithms significantly improve the decoding performance of the bit-flipping (BF) algorithm ...
ABSTRACT: Artificial deep neural networks (ADNNs) have become a cornerstone of modern machine learning, but they are not immune to challenges. One of the most significant problems plaguing ADNNs is ...
Abstract: Distributed gradient descent algorithms have come to the fore in modern machine learning, especially in parallelizing the handling of large datasets that are distributed across several ...
Stochastic gradient descent (SGD) provides a scalable way to compute parameter estimates in applications involving large-scale data or streaming data. As an alternative version, averaged implicit SGD ...
This C library provides efficient implementations of linear regression algorithms, including support for stochastic gradient descent (SGD) and data normalization techniques. It is designed for easy ...
Understand what is Linear Regression Gradient Descent in Machine Learning and how it is used. Linear Regression Gradient Descent is an algorithm we use to minimize the cost function value, so as to ...
Although [Vitor Fróis] is explaining linear regression because it relates to machine learning, the post and, indeed, the topic have wide applications in many things that we do with electronics and ...
Although [Vitor Fróis] is explaining linear regression because it relates to machine learning, the post and, indeed, the topic have wide applications in many things that we do with electronics and ...
ABSTRACT: As drivers age, roadway conditions may become more challenging, particularly when normal aging is coupled with cognitive decline. Driving during lower visibility conditions, such as ...