Technological development is key to improving the way hematologic cancer is diagnosed and treated. With this vision, the Josep Carreras Leukemia Research Institute is committed to the creation and ...
Illumina is raising the curtain on its upcoming entry into spatial transcriptomics, with tech designed to help researchers explore cellular behavior mapped across complex tissues. The announcement ...
Biological systems are inherently three-dimensional—tissues form intricate layers, networks, and architectures where cells interact in ways that extend far beyond a flat plane. To capture the true ...
This figure shows how the STAIG framework can successfully identify spatial domains by integrating image processing and contrastive learning to analyze spatial transcriptomics data effectively.
Spatial transcriptomics provides a unique perspective on the genes that cells express and where those cells are located. However, the rapid growth of the technology has come at the cost of ...
Breakthrough research details how distinct tissue niches and cell communication contribute to chronic active lesions in MS. Study: Cell type mapping reveals tissue niches and interactions in ...
Spatial transcriptomics offers a revolutionary approach to understanding the tumor microenvironment (TME) in solid tumors by preserving the spatial context of gene expression, which is crucial for ...
Conventional transcriptomic techniques have revealed much about gene expression at the population and single-cell level—but they overlook one crucial factor: spatial context. In musculoskeletal ...
Spatial transcriptomics (ST) technologies reveal the spatial organization of gene expression in tissues, providing critical insights into development, neurobiology, and cancer. However, the high cost ...
Single-cell RNA transcriptomics allows researchers to broadly profile the gene expression of individual cells in a particular tissue. This technique has allowed researchers to identify new subsets of ...