This project implements a complete event-driven spiking neural network (SNN) accelerator on FPGA with seamless PyTorch integration for training and deployment. The design uses Accumulate-only (AC) ...
Abstract: Recently, topological graphs based on structural or functional connectivity of brain network have been utilized to construct graph neural networks (GNN) for Electroencephalogram (EEG) ...
Learn how Network in Network (NiN) architectures work and how to implement them using PyTorch. This tutorial covers the concept, benefits, and step-by-step coding examples to help you build better ...
Graph Neural Networks (GNNs) and GraphRAG don’t “reason”—they navigate complex, open-world financial graphs with traceable, multi-hop evidence. Here’s why BFSI leaders should embrace graph-native AI ...
Machine learning and neural nets can be pretty handy, and people continue to push the envelope of what they can do both in high end server farms as well as slower systems. At the extreme end of the ...
Abstract: Graph neural networks (GNNs) have shown promise in graph classification tasks, but they struggle to identify out-of-distribution (OOD) graphs often encountered in real-world scenarios, ...
BingoCGN employs cross-partition message quantization to summarize inter-partition message flow, which eliminates the need for irregular off-chip memory access and utilizes a fine-grained structured ...
This repository explores what pruning of neural networks is and how to apply it using pyTorch. For this purpose a very small ResNet10 has been chosen, trained with FashionMNIST. In unstructured ...
Proceedings of The Eighth Annual Conference on Machine Learning and Systems Graph neural networks (GNNs), an emerging class of machine learning models for graphs, have gained popularity for their ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results