Machine learning algorithms are widely used for decision making in societally high-stakes settings from child welfare and criminal justice to healthcare and consumer lending. Recent history has ...
Setodji CM, McCaffrey DF, Burgette LF, Almirall D, Griffin BA. The right tool for the job: Choosing between covariate balancing and generalized boosted model propensity scores. Epidemiology. 2017.
Yang, Mochen, Edward McFowland III, Gordon Burtch, and Gediminas Adomavicius. "Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach ...
The manufacturing landscape is evolving rapidly, with intelligent systems increasingly promising to boost efficiency, quality, and overall competitiveness. Traditional machine learning (ML) has ...
This course offers a rigorous yet practical exploration of Bayesian reasoning for data-driven inference and decision-making. Students will gain a deep understanding of probabilistic modeling, and ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results